skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zemenick, Ash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite broad consensus that highlighting counter-stereotypical scientist role models in educational materials promotes equity and success, the specific elements that make these materials effective remain untested. Are pictures of counter-stereotypical scientists enough to communicate to students that scientists come from a variety of backgrounds, or is additional information required? To parse the effects of including visual depictions and humanizing information about scientists featured in biology course materials, we distributed three randomized versions of assignments over several academic terms across 36 undergraduate institutions (n> 3700 students). We found that including humanizing information about scientists was key to increasing student engagement with the biology course materials. The positive effect of humanizing information was especially important for students who related to the scientists. Structural equation modelling revealed the extent to which students related to scientists mediated the positive effect of humanizing descriptions on student engagement. Furthermore, our results were strongest among students who shared one or more excluded identity(s) with the featured scientists. Our findings underscore the importance of providing students with examples of humanized and relatable scientists in classrooms, rather than simply adding a photo to increase representation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Sharp, Starlette (Ed.)
    Featuring a diversity of scientists within curriculum provides opportunities for students to relate to them. We manipulated the amount and type of information students received about scientists. We found including personal, humanizing information increased the extent to which students related to them, with implications for curriculum development. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Luanna, Prevost (Ed.)
    In this essay, we review how counter-stereotypical scientists have been featured in life science courses and discuss the benefits and costs of developing and interacting with these materials from the perspectives of three groups: students, instructors, and the featured scientists. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Abstract Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus. 
    more » « less
  5. Textbooks shape teaching and learning in introductory biology and highlight scientists as potential role models who are responsible for significant discoveries. We explore a potential demographic mismatch between the scientists featured in textbooks and the students who use textbooks to learn core concepts in biology. We conducted a demographic analysis by extracting hundreds of human names from common biology textbooks and assessing the binary gender and race of featured scientists. We found that the most common scientists featured in textbooks are white men. However, women and scientists of colour are increasingly represented in contemporary scientific discoveries. In fact, the proportion of women highlighted in textbooks has increased in lockstep with the proportion of women in the field, indicating that textbooks are matching a changing demographic landscape. Despite these gains, the scientists portrayed in textbooks are not representative of their target audience—the student population. Overall, very few scientists of colour were highlighted, and projections suggest it could take multiple centuries at current rates before we reach inclusive representation. We call upon textbook publishers to expand upon the scientists they highlight to reflect the diverse population of learners in biology. 
    more » « less
  6. Abstract Sexual and gender minorities face considerable inequities in society, including in science. In biology, course content provides opportunities to challenge harmful preconceptions about what is “natural” while avoiding the notion that anything found in nature is inherently good (the appeal-to-nature fallacy). We provide six principles for instructors to teach sex- and gender-related topics in postsecondary biology in a more inclusive and accurate manner: highlighting biological diversity early, presenting the social and historical context of science, using inclusive language, teaching the iterative process of science, presenting students with a diversity of role models, and developing a classroom culture of respect and inclusion. To illustrate these six principles, we review the many definitions of sex and demonstrate applying the principles to three example topics: sexual reproduction, sex determination or differentiation, and sexual selection. These principles provide a tangible starting place to create more scientifically accurate, engaging, and inclusive classrooms. 
    more » « less